Quais são as técnicas de mineração de dados?
- wilsoncharlessilva
- 26 de ago. de 2023
- 2 min de leitura
As técnicas de mineração de dados se baseiam em vários campos de aprendizado que se sobrepõem, incluindo análise estatística, machine learning (ML) e matemática. Alguns exemplos são dados abaixo.
Mineração de regras de associação
A mineração de regras de associação é o processo de encontrar relacionamentos entre dois conjuntos de dados diferentes e aparentemente não relacionados. As instruções if-then demonstram a probabilidade de uma relação entre dois pontos de dados. Os cientistas de dados medem a precisão dos resultados usando critérios de suporte e confiança. O suporte mede a frequência com que os elementos relacionados aparecem no conjunto de dados, enquanto a confiança mostra o número de vezes que uma instrução if-then é precisa.
Por exemplo, quando os clientes compram um item, eles também costumam comprar um segundo item relacionado. Os varejistas podem usar a mineração de associação em dados de compras anteriores para identificar o interesse de um novo cliente. Eles usam resultados de mineração de dados para preencher as seções recomendadas de lojas online.
Classificação
A classificação é uma técnica complexa de mineração de dados que treina o algoritmo de ML para classificar dados em categorias distintas. Ela usa métodos estatísticos como árvores de decisão e vizinho mais próximo para identificar a categoria. Em todos esses métodos, o algoritmo é pré-programado com classificações de dados conhecidas para adivinhar o tipo de um novo elemento de dados.
Por exemplo, os analistas podem treinar o software de mineração de dados usando imagens rotuladas de maçãs e mangas. Com alguma precisão, o software pode prever se uma nova imagem é uma maçã, manga ou outra fruta.
Agrupamento em clusters
O agrupamento em clusters se trata de agrupar vários pontos de dados com base em suas semelhanças. É diferente da classificação porque não consegue distinguir os dados por categoria específica, mas pode encontrar padrões em suas semelhanças. O resultado da mineração de dados é um conjunto de clusters em que cada coleção é distinta de outros grupos, mas os objetos em cada cluster são semelhantes de alguma forma.
Por exemplo, a análise de cluster pode ajudar na pesquisa de mercado ao trabalhar com dados multivariados de pesquisas. Os pesquisadores de mercado usam a análise de cluster para dividir os consumidores em segmentos de mercado e entender melhor as relações entre os diferentes grupos.
Análise de sequência e caminho
O software de mineração de dados também pode procurar padrões nos quais um determinado conjunto de eventos ou valores leva a outros posteriores. Ele pode reconhecer alguma variação nos dados que ocorre em intervalos regulares ou no fluxo e refluxo de pontos de dados ao longo do tempo.
Por exemplo, uma empresa pode usar a análise de caminho para descobrir que as vendas de determinados produtos aumentam pouco antes dos feriados ou para perceber que o clima mais quente traz mais pessoas ao site.
Commentaires